Question: -

In a $\triangle ABC$, let $\angle C = \pi / 2$. If r is the inradius and R is the circumradius of the triangle, then 2(r+R) is equal to (2000, 2M)

(a)
$$a + b$$

(b)
$$b + c$$

(c)
$$c + a$$

(d)
$$a + b + c$$

Solution: -

Here,
$$R^2 = MC^2 = \frac{1}{4}(a^2 + b^2)$$
 [by distance from origin]
$$= \frac{1}{4}c^2$$
 [by Pythagoras theorem]

$$\Rightarrow$$
 $R = \frac{c}{2}$

Next,
$$r = (s - c) \tan (C/2) = (s - c) \tan \pi/4 = s - c$$

$$\therefore 2(r + R) = 2r + 2R = 2s - 2c + c$$

$$= a + b + c - c$$

$$= a + b$$